Abiturvorbereitung Gymnasium Mathematik Analysis

Klausur Training

Abiturvorbereitung Gymnasium Mathematik Analysis voorzijde
Abiturvorbereitung Gymnasium Mathematik Analysis achterzijde
  • Abiturvorbereitung Gymnasium Mathematik Analysis voorkant
  • Abiturvorbereitung Gymnasium Mathematik Analysis achterkant

Analysis-Aufgaben in der schriftlichen Abiturprüfung Das schriftliche Abiturfach Mathematik besteht aus den drei Fachgebieten Analysis, analytische Geometrie und Stochastik. Die Analysis hat in der Prüfung den größten Anteil und beinhaltet die zwei wichtigen Gebiete der Differential- und der Integralrechnung. Das zentrale Thema der Differentialrechnung ist die Berechnung lokaler Veränderungen von Funktionen. Der Grundbegriff der Differentialrechnung ist die Ableitung einer Funktion, deren geometrische Entsprechung die Tangentensteigung der Funktion ist. Die Integralrechnung kann als die Umkehrung des Differenzierens angesehen werden und ist definiert als der Flächeninhalt, der von einer Funktion\ auf einem Intervall eingeschlossen wird. Mit den mathematischen Methoden, die sich aus der Differentialrechnung und aus der Integralrechnung ergeben, werden im Abitur folgende Funktionsklassen mit ihren einfachen Verkettungen oder Verknüpfungen analysiert. Ganzrationale Funktionen Gebrochenrationale Funktionen Exponential- und Logarithmusfunktionen Sinus- und Kosinusfunktionen Mathematische Aufgabentypen im Abitur: 1. Kurvendiskussion mit Extremwertaufgabe Untersucht wird eine Funktion aus den Funktionsklassen auf Symmetrieeigenschaften, Schnittpunkte mit den Koordinatenachsen Extremstellen, Wendepunkte und Flächenbestimmung. Lösen einer Extremwertaufgabe. 2. Kurvendiskussion ohne Extremwertaufgabe Untersucht wird eine Funktionenschar aus den Funktionsklassen in ihrem Definitionsbereich auf Symmetrieeigenschaften, Schnittpunkte mit den Koordinatenachsen Extremstellen, Wendepunkte, Terassenpunkte und Flächenbestimmung oder ihr Rotationsvolumen in Abhängigkeit eines Parameters. Zusätzlich werden bei Funktionsscharen häufig die Ortslinien spezieller Punkte ermittelt. 3, Mathematische Modelle untersuchen Es werden realitätsnahe Probleme durch geeignete Funktionen aus den Funktionsklassen beschrieben und auf sachbezogene Fragestellungen hin untersucht. Damit wird das erlernte mathematische Wissen in konkreten Situationen sinnvoll verwendet.

Specificaties
ISBN/EAN 9783969668566
Auteur Thomas Schneider
Uitgever Van Ditmar Boekenimport B.V.
Taal Duits
Uitvoering Paperback / gebrocheerd
Pagina's 254
Lengte
Breedte

Wat vinden anderen?

Er zijn nog geen reviews van dit product.